

Software Manual

Of the ACS306, ACS606 V2.0 & ACS806 V2.0

Version 0.0.0 http://www.Leadshine.com

Table of Contents

Table of Contents	ii
Introduction	1
Workspace	1
Menus and Toolbar	1
Using the Software	3
Connecting Drive	3
Configuration Window	4
Operating Mode Tab	4
Filter Setting Tab	5
Motor Parameters	6
Current Loop Window	6
Position Loop Window	7
Pos Loop High Speed Tab	7
Pos Loop Low Speed Tab	8
Trapezoid Velocity Profile Tab	9
Image Display Tab	9
Show Curves Window	10
Show Parameter Window	11
Error Trace Window	12
Configuring the Drive	13
Step 1: Configure the motor parameters and position loop settings	13
Step 2: Configure the inputs/outputs options	14
Step 3: Tune the current loop gain Kp and Ki	15
Low-Speed Gain Set VS. High-Speed Gain Set	
Step 4: Tune the low speed gain set when motor shaft is locked	
Step 5: Tune the high speed gain set and start the trapezoid motion	
Step 6: Save parameters to drive's NVM	
Contact Us	

Introduction

This document provides necessary information on how to use the setup software to configure and tune the leadshine's AC brushless servo drive ACS306, ACS606 V2.0 and ACS806 V2.0.

Workspace

Menus and Toolbar

Menus and toolbars are at the top of the workspace. You can click the menu bar to view the pull-down menu. The toolbar provides the most frequency used commands.

Menus and Toolbar (Continued)

Menu	Pull Down	Toolbar	Function
Option ->	Communication	Se.	Open the serial port and connect to drive
	Exit	X	Exit from the setup software
	Configuration	à	Configure the operating mode, I/O, filter, motor & feedback parameters
Tuning->	Current Loop		Tune the current loop parameters
	Velocity Loop		Tune the velocity loop parameters
	Position Loop	XX	Tune the position loop parameters
Display->	Show Curves	****	Display the motion variables like position error, feedback velocity & current
	Show Parameters		Parameter list
Error Trace->	-)J	Check drive error(s)
Help->	Product Information		Setup software information

Using the Software

Connecting Drive

Communication	Communication	×
Serial Port: COM1 Baud Rate: B8400 Drive Address: 1	Serial Port: COM1 Baud Rate: S8400 Close Drive Address: 1	

Click Option -> Communication to open the "Communication" window. Select the serial port number and click on the Open button. The baud rate must be 38400 for the ACS306, ACS606 V2.0 and ACS806 v2.0. The software will try to communication with the drive. It may take several minutes.

Before connecting the drive, please make sure:

1) The RS232 cable has been connected between the drive and PC serial port.

2) The power supply has been applied to the drive. The green LED is on.

The motor is needn't be connect to the drive if you just want to configure the parameters.

Do not connect or disconnect the RS232 communication cable when powered is on.

Configuration Window

To open the "Configuration" window, click Tuning -> Configuration on the menu bar. In the "Configuration" window, the parameters are separated into three regions. The 1st region is the "Operating Mode" tab. The 2nd region is the "Filter Setting" tab and the 3rd region is at the half bottom of the whole window.

Operating Mode Tab

In the "operating mode" tab you can select the pulse mode (type) and the active level/edge of the digital inputs/outputs. The table below provides detailed information for each option.

Configuration				E
Pulse Mode Pulse Edge O Double Pulse Mode O Active at rising edge Pulse+Direction Active at falling edge Enable Input Alarm Signal C Active high Active high impedance Active low Active low impedance		Direction Signal Polarity C High level for positive Low level for positive In-position Signal Active high impedance C Active low impedance	 Iimit Signal 	
Operating Mode Input Settings Input Smoother: M Dead Band(mV): 0 Offset(mV) 0 Peak Current(A): 0 Peek Velocity(rpm): 0 Invert Input Enable 2-axes interpolation	Filter Setting Motor Parameter Rated Current(A): Phase Inductance Motor Shaft Inertii Phase Resistance Back-EMF consta Motor Type	s 6 Torque Const e(mH): 20.00 Motor a(Kg.m^2): 0.000000 Rated e(Ohms): 10.00 ant(V/Krpm): 15.00 tardard Phase	ant(Nm/A): 0.000 Pole Pairs: 4 Power(W):	Position Loop Settings Electronic Gear Numerator: 1 Electronic Gear Denominator: 1 Encoder Line(*4): 10000 Position Following Limit(P): 65535 In-position threshold:

Operating Mode tab- Input and output parameters

	Double P	ulse Mode :		
		Positive Move	Negative Move	
	PUL			← High Level
	DIR			← Low Level
Pulse Mode				
	Pulse + D	irection :		
		Positive Move	Negative Move	
	PUL			← High Level
	DIR	٦		← Low Level

Operating Mode tab - Input and output parameters (Continued)

Pulse Edge	Specifies the active edge of the pulse signal. The motor moves one micro step at each active edge of the pulse signal. Note that the actual setting is also related to the connection circuitry between the drive's input and the controller's output. For
	example, the PNP (sourcing) connection is on the converse to the NPN (sinking) connection.
Direction Signal Polarity	This option affects the actual motion direction as por the DIP signal level. You can use it
Direction Signal Folanty	This option affects the actual motion direction as per the Dir signal level. Tou can use it
	to change the rotation direction when it is converse.
Limit Signal	Specifies the active level of the end limit inputs.
Enable Input	Specifies the active level of the enable input.
Alarm Signal	Specifies the active impedance of the alarm output.
In-position Signal	Specifies the active impedance of the in-position (Pend) output.

Filter Setting Tab

In the "Filter Setting" tab, you can specify the cutting frequency for the digital filters. The table below provides detailed information for each parameter. Note that the default value of those parameters is suitable for most of the applications. It is unnecessary to change the default value if the motion system works well.

Configuration	
Cutting frequency	
Cutting frequency of velocity sampling filter:	2500
Cutting frequency of command current:	1000
Cutting frequency of command velocity:	200
Cutting frequency of pulse filter:	0
Cutting frequency of encoder input filter:	0
Operating Mode Filter Setting	

Filter Setting Tab – Cutting frequency of the filter

Cutting f velocity s	requency of ampling filter	the	Specifies the cutting frequency of the velocity sampling filter. Make it as high as possible but big value will introduce high motor noise.
Cutting	frequency	of	Specifies the cutting frequency of the command current. Make it as high as possible but
command	d current		big value will introduce high motor noise. Too low value may lead to motor vibration.
Cutting	frequency	of	Specifies the cutting frequency of the velocity command velocity
command	d velocity		specifies the cutting nequency of the velocity command velocity
Cutting	frequency	Of	Specifies the sutting frequency of the pulse filter
pulse filte	er		specifies the cutting nequency of the pulse filter
Cutting	frequency	Of	Specifies the active impedance of the encoder input filter
encoder i	nput filter		specifies the active impedance of the encoder liput lifter.

Motor Parameters

Pated Current (A)	Specifies the motor's rated (continued) current. It is actually the drive's continuous
	current limit.
Phase Inductance (mH)	Specifies the motor's phase inductance.
Motor Shaft Inertia	Specifies the inertia of the motor shaft
(Kg.m^2)	specifies the menta of the motor shart
Phase Resistance(Ohms)	Specifies the phase resistance of the motor
Back-EMF constant	Specifies the back FME constant of the motor
(V/Krpm)	specifies the back-Livir constant of the motor
Motor Type	Specifies the communication type of the motor
Torque Constant (Nm/A)	Specifies the torque constant of the motor
Motor Pole Pairs	Specifies the pole pairs of the motor. It is the motor poles divided by 2.
Rated Power (W)	Specifies the rated power of the motor.

Current Loop Window

To open the "Current Loop" window, click Tuning -> Current Loop on the menu bar. In the "Current Loop" window, you can adjust the Kp (proportional gain) and Ki (integral gain) then start a step test. The window will display a green curve which represents the actual motor current to indicate the test result.

Current loop tuning parameters

КР	Proportional gain of the current loop. Increase it to make the current rise fast.
N	Integral gain of the current loop. Set a proper value to lower down the difference between the red curve
NI	(target current) and the green curve (feedback current).
I-test	Test current value. It should be greater than 0.5A and less than the motor's continuous current.
Start	Click this button to issue a step command to the current loop

Position Loop Window

To open the "Position Loop" window, click Tuning -> Potion Loop on the menu bar. In the "Position Loop" window, you can adjust PID parameters and then start a trapezoid velocity motion to view the effect the PID parameters. The window will display the actual current curve, the actual velocity curve and the position error curve for each trapezoid velocity motion test. There are two gain sets for the PID parameters. One is for the low-speed (standstill) performance and the other is for the high-speed (dynamic) performance. These two gain sets are separated into the "Pos Loop Low Speed" tab and the "Pos Loop High Speed" tab, respectively.

Pos Loop High Speed Tab

The configuration in the "Pos Loop High Speed Tab" tab affects the dynamic performance of the drive's position loop. When the motor starts to move, the PID parameters in this tab starts to take effect.

	Position Loop Control (Dynamic performance)
Кр	Proportional gain of the high-speed position loop. Increase it to make the actual motor position response
	fast.
Kvff	Velocity feed-forward gain of the high-speed position loop.
Kd	Derivative gain of the high-speed position loop.

	Velocity Loop Control (Dynamic performance)
Vp	Proportional gain of the high-speed velocity loop. Increase it to make the actual motor velocity response
	fast.
Vi	Integral gain of the high-speed velocity loop.
Kaff	Acceleration feed-forward gain of the high-speed velocity loop.

Pos Loop Low Speed Tab

The configuration in the "Pos Loop Low Speed Tab" affects the standstill performance of the drive's position loop. When the motor starts to move, the PID parameters in this tab starts to take effect.

Position Loop Control (Standstill performance)			
Kp_L	Proportional gain of the low-speed position loop. Increase it to make the actual motor position response		
	fast.		
Ki_L	Integral gain of the low-speed position loop.		
Kd_L	Derivative gain of the low-speed position loop.		

Velocity Loop Control (Standstill performance)			
Vp_L	Proportional gain of the low-speed velocity loop. Increase it to make the actual motor velocity response		
	fast		
Vi_L	Integral gain of the low-speed velocity loop		

	Feed-forward Control (Standstill performance)
Kaff_L	Acceleration feed-forward gain of the low-speed position loop.
Kvff_L	Velocity feed-forward gain of the low-speed position loop.

Trapezoid Velocity Profile Tab

The motion test for the PID tuning is defined by the trapezoid velocity profile in the "Trapezoid Velocity Profile" tab. You can configure the velocity, acceleration, move distance, dwell and repeating times for the trapezoid motion.

Trapezoid Velocity Profile

Velocity (RPM)	Specifies the velocity of the trapezoid motion
Acceleration (r/s/s)	Specifies the acceleration of the trapezoid motion
Distance (Pulses)	Specifies the acceleration of the trapezoid motion
Inverval (ms)	Specifies the interval (dwell) of the trapezoid motion
Repeat Times	Specifies the repeat times of the trapezoid motion

Image Display Tab

In the "image display" tab, you can chouse which curve to be displayed and even change its color. The selectable curves are actual current, actual velocity, position error, actual position and command position. The sampling time for those curves is defined by the "Trace Time".

Show Curves Window

To open the "Show Curves" window, click Display-> Show Curves on the menu bar. You can use open this window to monitor the actual current, actual velocity and position error when the drive is controlled by external step/direction signal. Click the "Start" to start the monitoring of these selected curves. Click the "Stop" button to stop the monitoring.

Show Parameter Window

To open the "Show Parameters" window, click Display-> Show Parameters on the menu bar. You can view the all configurable parameters in this window. However, the most significant functions of the "Show Parameters" window are:

- I Write the parameter values to the drive's EEPROM. Thus they will not be lost after repowering the drive.
- I Save the parameters as a configuration file to the PC.

Parameters			
	Servo I	Drive Parameters	
ParameterName	ParameterValue	Range	A Read
Current loop Kp	18000	0~32767	Keau
Current Ki	600	0~32767	1
Velocity loop high speed Kp	1000	0~32767	Download
Velocity loop high speed Ki	200	0~32767	
Acceleration high speed feed-forwa	0	0~32767	Save
Position loop high speed Kp	1000	0~32767	
Position loop high speed Ki	0	0~32767	Save As
Position loop high speed Kd	0	0~32767	
Velocity high speed feed-forward K	0	0~32767	Open
Electronic gear numerator	1	1~32767	
Electronic gear denominator	1	1~32767	
Position following error limit	65535	0~32767	
Velocity loop low speed Kp	1000	0~32767	
Velocity loop low speed Ki	0	0~32767	
Acceleration low speed feed-forwa	0	0~32767	
Position loop low speed Kp	500	0~32767	
Position loop low speed Ki	0	0~32767	
Position loop low speed Kd	0	0~32767	
Velocity low speed feed-forward Kv	0	0~32767	
In-position threshold	4	0~1000	
Encoder Count per one revolution	10000	0~32767	
Motor Pole Pairs	4	1~32767	
Rated Power	0	400W.750W.1000W.1500W	
Phase Resistance	10	0.01~327ohms	
Phase Inductance	20	0.01~327mH	Exit

Read	Read the parameter values from the drive
Download	Download the parameter values to the drive's RAM (will be lost after repowering the drive)
Save	Write the parameter values to the drive's EEPROM
Save As	Save the parameter values to a PC file (need to read the parameter first)
Open	Open a configuration file

Error Trace Window

To open the "Error Trace" window, click Error Trace on the menu bar. You can check the drive error status in this window. When there is drive error occurs (Red LED blinking), this window helps you figure out the cause of the problem.

Configuring the Drive

Typically, you can follow the steps below to configure the drive.

- Step 1: Configure the motor parameters & position loop settings.
- Step 2: Configure the inputs/outputs option according to the connection circuitary.
- Step 3: Tune the current loop gain Kp and Ki according to the supply voltage and connecting motor.
- Step 4: Tune the loop gains for the standstill performance according to the load.
- Step 5: Tune the loop gains for the dynamic performance according to the load.

Step 6: Write parameters to Drive's EEPROM and save it to a PC file.

Step 1: Configure the motor parameters and position loop settings

The motor parameters and position loop settings are very important for the drive to perform a correct operation. The most significant parameters are listed as follows:

- I The rated current which is actually the continuous current limit
- I The pole pairs which affects the motor commutation
- I The encoder line which is actually 4 times of the actual encoder lines
- I The position following limit which defines the threshold of the position following error.

Click Tuning->Configuration to open the "configuration" window. These parameters and the recommended value can be found in the configuration window as follows.

Pulse Mode	Pulse Edge	Direction Signal Polarity	Direction Signal Polarity	
C Double Pulse Mode C Active at rising edge		C High level for positive	 Active high 	
Pulse+Direction	 Active at falling edge 	Cow level for positive	C Active low	
Enable Input	Alarm Signal	In-position Signal		
C Active high C Active high impedance		e Active high impedance		For the Leadshine ACM series
 Active low 	 Active low impedance 	For the Leadshine A	ACM series	motors, the "encoder line" value
0	Elher Celling	pairs" value is 4.		of the position follow error is
nput Settings-	Motor Parame	aters		65355 for a first time setup.
Input Smoother: Mode 0 - Rated Current		(A): 16 Torque (Constan Im/A): In nnn	·
)ead Band(mV):	Phase Inducta	ance(mH): 20.00	Motor Pole Pairs: 4	Electronic Gear Denor ator: 1
)ffset(mV)	Motor Shaft In	ertia(Kg.m^2): 0.000000	Rated Power(W):	Encoder Line(*4): 10000
Peak Current(A): 0.0 Phase Resistan		ance(Ohms): 10.00		Pasitian Falloutina Limit(P) 65535
Peek Velocity(rpm): 0	Back-EME cor	nstant(V/Krpm): 15.00		Fosition Following Limit(F).

Step 2: Configure the inputs/outputs options

The ACS306, ACS606V2.0 and ACS806 V2.0 support the position mode only. Uses can apply either the pulse/direction command or the CW/CCW (double pulse) command to rotate the motor. The "pulse edge" option defines the active edge of the pulse input. The motor shaft rotates one micro step per each active edge. If the motion direction is not correct, try to toggle the "Direction Signal polarity" which represents the active level for the positive direction. There are also options for the active level the enable input, end limit input, alarm output and in-position (Pend) output.

- Rules Mode	Pulse Edge		
Double Pulse Mode	C Active at rising edge	C High level for positive	Iimit Signal C Active high
C Active high	Active at falling edge Alarm Signal Active high impedance	Low level for positive In-position Signal Active high impedance	C Active low
Active low	Active low impedance	C Active low impedance	

Step 3: Tune the current loop gain Kp and Ki

The following procedure illustrates the typical tuning process of the current loop based on the ACM602V36-2500 and the ACS806 V2.0 with a 36VDC power supply.

Step 3.1: Set "I-test" to 1 and start the tuning with small Kp and "zero" Ki. Here we set Kp = 5000 and Ki = 0. The "I-Test" is the amplitude of the target which is based on the required current for the application but it should be less than the motor's rated current. The recommended range for I-test is 20% to 50% of the rated current. Here we set it to 4A for the ACM602V36-2500.

Step 3.2: Click the Start button and the plot window will show the step response of the current test. As the red curve increases from 0 to target slowly, it indicates that a large Kp needs to be introduced. If there has been big over shoot or vibration over the target line for your application, you need to set lower I-test value for the test.

Step 3.3: Increase Kp to 8000 and click Start. The red curve change faster from 0 to the target. Note that the increment for Kp is depending on the supply voltage, motor inductance and resistance. If you are not sure about it, just use a small value such as 100 at first then goes higher.

Step 3.3 (continued): Increase Kp of the current loop

Step 3.4: Set Kp to 10000, 14000 and 18000, respectively. Then click the Start. The red curve is changing faster and faster. The over-shoot appears when Kp is 16000. It indicates that you need to stop increasing Kp and back off. So we decrease Kp to 16000 until the actual value is exactly over the target value.

Step 3.4 (continued): Increase Kp of the current loop

Step 3.5: Now the Kp is relatively good enough. But there is still error between the actual current and the target current. So we need to introduce Ki to reduce the steady error on the constant part. It follows the same procedure as Kp. High Ki causes big vibration, system lag and makes the performance worse. The following figures show how to tune the integral gain.

Step 3.5 (Continued): Increase current loop Ki

Step 3.5 (Continued): Increase current loop Ki

The current loop tuning is basically finished now. You can continue to adjust the Kp and the Ki if necessary.

Low-Speed Gain Set VS. High-Speed Gain Set

The ACS 2.0 series drive adopts two gain sets in order to solve the contradiction between fast system response and lower motor noise. The two gain sets are switched automatically according to the motion status. Generally speaking, the low speed gain set which locates in the "Pos Loop Low Speed" tab takes effect when the system goes into low-speed or standstill state. The high speed set which locates in the "Pos High Speed" tab takes effect when the motor starts a motion.

Step 4: Tune the low speed gain set when motor shaft is locked

Click Tuning->Position Loop on the menu bar to open the position loop tuning window. Click the "Pos Loop Low Speed" tab to start the tuning. The most significant gains are Vp_L, Vi_L and Kp_L. You can set the Kvff_L, Kaff_L, Ki_L and Kd_L to zero.

The most significant parameters for the low-speed gain set

The typical tuning procedure of the low speed gain set:

Step 4.1: Set small value of Vp_L, ViL and Kp_L. Assign Ki_L, Kd_L, Kaff_L and Kvff_L to zero. Here we set Vp_L = 1000, Vi_L = 50 and Kp_L = 500. The initial values of these significant parameters are depending on the motor, the supply voltage of the drive, the transportation system and the load inertia.

Step 4.2: Increase the Vp_L to increase the holding torque (stiffness) of the motor shaft (or load) until the motor noise or vibration can not be accepted. You can feel the holding torque by moving the motor shaft and the load in positive and negative direction.

Software manual of the ACS306, ACS606 V2.0 / ACS806 V2.0

In this example, we get relatively good torque at Vp_L = 5000.

Step 4.3: Increase the Kp_L to improve the holding torque. You can follow the same way as increasing the Vp_L in step 4.2 to determine the suitable Kp_L for your system.

Step 4.4: Tuning of the low speed gain set is finished.

The values of the low-speed gain set after tuning in step 4

Step 5: Tune the high speed gain set and start the trapezoid motion

Click the "Pos Loop High Speed" tab to start the tuning. The most significant gains are Vp, Kp and Kd. You can set the Kvff, Vi and Kaff to zero.

The most significant parameters for the high-speed gain set

The typical tuning procedure of the high speed gain set:

Step 5.1: Trapezoid Velocity Profile Setting and the Image Display Setting:

The tuning of high speed gain set requires the motor shaft (or load) to perform a forward and backward motion. Make sure initial motion direction is correct and the move distance will not exceed the traveling limit in both directions. If you are not sure about it, manual move the load to the center of the total travel and set low value for the velocity and move-distance. If the initial direction is converse, move the load the other side of the machine.

In this example, the trapezoid motion is defined as follows:

Velocity = 1500RPM, Acceleration = 1000 R/S/S

Distance = 140000, Interval = 100ms, Repeat Time = 1

The trapezoid velocity profile setting

Step 5.1 (continued): Check the "Actual Current", the "Actual Velocity" and the "Position Error" in the "Image Display" tab. The "Trace Time" is set to 1500ms.

The Image Display Setting

The MAX operating speed of your application	
The required acceleration for your application	
The max travel (or the move distance) in the normal operation	
100ms or other value for a special test	
1 recommended	
Adjust it to make the total trapezoid curve been displayed in the full window	

How to determine motion parameter and trace time for the tuning of your application?

Step 5.2: Set small value for Vp and Kp. Let Kd equal to zero at first. Assign Kvff, Vi and Kaff to zero. Here we set Vp = 1000 and Kp = 200. The initial values of Vp and Kp are depending on the motor, the supply voltage of the drive, the transportation system and the load inertia. Big vibration may occur at acceleration stage due to low Vp, shown as the following figure.

System vibration due to low Vp and Kp at the tuning of the high-speed gain set

Step 5.3: Increase the value of the Vp to make the actual velocity curve (green one) rise as rapid as possible thus reducing the position following error. Click the "Start" button to issue a trapezoid motion. It may take several seconds for the plot window to update the motion curves. The curve of the actual velocity is closing to an ideal trapezoid curve with increasing Vp. The tuning process is shown as follows:

High Speed Gain Tuning: Kp = 200, Kd = 0, Vp = 1000

High Speed Gain Tuning: Kp = 200, Kd = 0, Vp = 2000

High Speed Gain Tuning: Kp = 200, Kd = 0, Vp = 3000

High Speed Gain Tuning: Drag a triangle to zoom in

High Speed Gain Tuning: Check the peak value of the actual velocity

High Speed Gain Tuning: Check the peak value of the position following error

High Speed Gain Tuning: Kp = 200, Kd = 0, Vp = 5000

Step 5.4: Increase the Kp to reduce the position following error. You can follow the same way as increasing the Vp in step 4 to determine the suitable Kp value for your system.

High Speed Gain Tuning: Kp = 500, Kd = 0, Vp = 5000

High Speed Gain Tuning: Kp = 1000, Kd = 0, Vp = 5000

High Speed Gain Tuning: Kp = 1500, Kd = 0, Vp = 5000

Step 5.5: Increase the value of Kd a little to suppress the velocity over shoot if necessary.

High Speed Gain Tuning: Kp = 1500, Kd = 500, Vp = 5000

High Speed Gain Tuning: Kp = 1500, Kd = 700, Vp = 5000

Step 5.6: Tuning of the high speed gain set is finished. You can continue to adjust the high speed gains if necessary.

L

Step 6: Save parameters to drive's NVM.

All the parameters are just stored in the driver's RAM. Otherwise they will be lost after repowering the driver. Click Display->Show Parameters to open the "Parameters" window. Then click the Save button to write the parameters to the drive's EEPROM.

Parameters	Servo Drive Parameters	[
ParameterName	ParameterValue Range	Read
	the parameters to the drive's	Download
	EEPROM	Save
	Save the parameters to a PC	Save As
	file.	Open
	▲ All the parameteres will be written to the EEPROM, continue? 是(Y) 否(N)	
		Exit

Prompt	
Writed to the EEPR	OM succeeded!
	确定

Contact Us

China Headquarters Address: 3/F, Block 2, Nanyou Tianan Industrial Park, Nanshan District Shenzhen, China Web: <u>http://www.leadshine.com</u>

Sales Hot Line: Tel: 86-755-2641-7674 (for Asia, Australia, Africa areas) 86-755-2640-9254 (for Europe areas) 86-755-2641-7617 (for America areas) Fax: 86-755-2640-2718 Email: <u>sales@leadshine.com</u>.

Technical Support: Tel: 86-755-2641-8447, 86-755-2641-8774, 86-755-2641-0546 Fax: 86-755-2640-2718 Email: <u>tech@leadshine.com(for</u> All)

Leadshine U.S.A Address: 25 Mauchly, Suite 318 Irvine, California 92618 Tel: 1-949-608-7270 Fax: 1-949-608-7298 Web: <u>http://www.leadshineUSA.com</u> Email: <u>sales@leadshineUSA.com</u> and <u>support@leadshineUSA.com</u>.